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ABSTRACT
Large-scale climate simulation models have been developed and widely 
used to generate historical data and study future climate scenarios. These 
simulation models often have to run for a couple of months to understand the 
changes in the global climate over the course of decades. This long-duration 
simulation process creates a huge amount of data with both high temporal 
and spatial resolution information; however, how to effectively monitor and 
record the climate changes based on these large-scale simulation results 
that are continuously produced in real time still remains to be resolved. 
Due to the slow process of writing data to disk, the current practice is to 
save a snapshot of the simulation results at a constant, slow rate although 
the data generation process runs at a very high speed. This paper proposes 
an effective online data monitoring and saving strategy over the temporal 
and spatial domains with the consideration of practical storage and memory 
capacity constraints. Our proposed method is able to intelligently select and 
record the most informative extreme values in the raw data generated from 
real-time simulations in the context of better monitoring climate changes.

1.  Problem statement

Climate research has been an important topic to study, which aims to understand the significant 
influence of climate changes on human society and environment. For example, by simulating climate 
changes, we are able to explore the details of local changes. These simulations enable understanding to 
assist in mitigation of detrimental effects. As natural climate change often takes place over thousands 
or even millions of years, large-scale simulation models have become an essential tool in the climate 
research to predict the future climate changes. In general, the simulation models consist of systems 
of differential equations that are derived to characterize a wide range of important drivers of climate 
changes, such as atmosphere, ocean, ices, and land. At each timestep, the simulation models run the 
differential equations on a three-dimensional grid over the simulations domain and evaluate physical 
interactions with its neighboring points. In this way, a snapshot of the simulation at each timestep can 
be sequentially generated. This process happens at 1850 times real-time.
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With the rapid advancement in computing and simulation technology, many large-scale climate 
models, such as Earth System Model (ESM), have been developed to achieve high model accuracy over 
a long period of simulation time (Collins, Johansen, Evans, Woodward, & Caldwell, 2015; Gerhard, 
Iacono, May, Müller, & Schäfer, 2014). These models provide an unprecedented opportunity for us to 
better understand the climate changes with more granular information; however, how to deal with the 
Big Data produced from these simulation models in real time has become a central challenge nowadays 
(Archibald, Evans, Drake, & White, 2010). Big Data is often characterized by ‘3Vs’, referring to high 
Variety, high Velocity, and high Volume of information. Here, the simulation data generated from the 
climate research face the challenges of high velocity and high volume as a typical climate simulation 
program can generate one terabyte of data per day, or petabytes of data per year (Lautenschlager 
& Reinke, 2012). The primary reason that climate research produces such Big Data is because the 
investigations of climate changes over both spatial and temporal domains are critically important. 
On one hand, climate processes are driven by factors across a range of spatial scales, which requires 
the integrated study of both global and regional climate changes (Palmer, 2014). On the other hand, 
while some abrupt climate processes perform over a few minutes, they may interact with longer term 
natural climate processes which slowly evolve over periods that are longer than centuries.

Recently, some methods have been developed for online monitoring of Big Data from the qual-
ity control perspective (Huang, Kong, & Huang, 2014; Liu, Mei, & Shi, 2015; Ning & Tsung, 2012); 
however, they cannot be effectively used here due to the two unique challenges involved in the simu-
lation process. (i) First, only limited simulation results can be written into the hard disk. While data 
generation process runs at a very high speed (Archibald et al., 2010), it is extremely slow to write 
the data to the hard disk comparing to the speed of data generation (Palmer, 2014). In other words, 
while the simulation data are continuously and sequentially generated in real time at a high speed, 
only a small proportion of the data can be permanently saved in practice. (ii) Second, the memory 
capacity is limited compared to the large volume of data generated from the simulation process. Since 
a large quantity of data is computed at each timestep and the simulation data are generated at a very 
high speed, the memory space will be used up quickly even in a short time window if it is not well 
managed. Consequently, a critical challenge here is how to leverage the limited memory capacity to 
effectively monitor the climate changes and timely select the most informative data to save into the 
hard disk in real time.

These two challenging issues are currently critical and well recognized in the routine practice at 
the Climate Change Science Institute of Oak Ridge National Laboratory (ORNL). ORNL owns the 
largest open science computing system in the United States, known as Titan, which has been widely 
used to generate large-scale, long-duration climate simulations with both high spatial and temporal 
resolution information (Mayer, Worley, da Silva, & Gaddis, 2015). In particular, Titan is able to generate 
numerical simulations on the globe that can be gridded with 3000 × 1500 points in a layer, and with 
60 layers in total. Although the generation of one snapshot of simulation data only takes about 90 s, it 
needs up to 3 h in writing such one snapshot of information to the hard disk due to the slow process 
of writing data to disk as mentioned in challenge (i) As a result, the saving ratio, defined by the ratio 
of the amount of data saved in the hard disk over the total amount of data generated from simulations, 
is merely about 90

3×60×60
= 1:120. That is to say, saving is 120 times slower than the data generation 

process and about 119
120

≈ 99.17% of the data that produced from simulations has to be thrown away. 
In addition to the challenge of data storage, here the memory capacity is also limited compared to the 
speed and the volume of the generated data from simulations. In other words, if the important results 
are not timely written into the hard disk, the data temporarily stored in the memory space have to 
be discarded to make room for the new data generated at the next timestep. This memory constraint 
thus poses an additional challenge for effective monitoring and saving the simulation data in real time.

To address these limitations, several data reduction and compression algorithms have been devel-
oped in the literature. A review of the lossless and lossy compression algorithms for the climate data 
can be found in (Baker et al., 2014). While these methods have successfully demonstrated in some 
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applications (Lakshminarasimhan et al., 2011; Liu, Huang, Fu, Yang, & Song, 2013), their saving ratios 
vary in a range of 30%–80%, thus falling short in satisfying the application requirements at the ORNL 
(typically less than 1:100). In addition, most of these existing methods are offline post-processing 
techniques that cannot be effectively used in real time due to high computational cost.

The approach that currently implemented at the ORNL is to store the simulation data at a constant 
frequency over the temporal domain, i.e. only to save one snapshot of the generated data at every k 
timesteps, in which k is determined by the resource constraints mentioned above. In the followings, 
we call this approach as Constant Frequency-based Saving (CFS). Although the CFS approach is 
straightforward to implement, it may not effectively characterize the significant changes in the cli-
mate data. Figure 1 illustrates an example of one data stream generated from climate simulations. In 
particular, by using the CFS method, data points at every 3 timesteps are recorded, denoted by the red 
dots in Figure 1(a). It clearly shows that while the original data fluctuate over time, the CFS method 
cannot effectively characterize the significant changes in this data stream. In climate data, one of the 
key questions is what the extreme values are in the simulation results. This is because these extreme 
values contain important information for studying severe climate events, such as flooding and storm 
damage, which may significantly impact human activities and ecosystems. In addition, the extreme 
values are critically important for investigating the evidence and trends of climate changes (Meehl  
et al., 2000; Rahmstorf & Coumou, 2011). Although the simulated values in climate simulations involve 
random errors, the random errors can be negligible compared to the magnitude of simulated values. 
Therefore, how to effectively monitor and record the extreme values that are continuously generated 
from simulations has become an essential task in climate research. In this sense, a desired saving strat-
egy is illustrated in Figure 1(b) which can automatically detect and record the extreme values while 
the total number of data points saved is still the same as the original CFS approach.

The objective of this paper is, thus, to develop an effective online monitoring and saving strategy 
that can intelligently detect and select the most informative data (in term of the extreme values) to 
save to the hard disk in real time such that large changes in the simulations can be recorded. Here, 
we would like to further clarify the meaning of the word ‘effective’ in our context. In particular, the 
‘effectiveness’ should be evaluated by comparing with a baseline model, i.e. the currently used CFS 
approach at the ORNL, subject to the resource constraints that only a certain amount of simulation 
data can be saved in the hard disk and carried in the memory space in real time. As a result, the core 
challenge here is how to manage the limited resource constraints for data monitoring and saving 
simultaneously when the simulation results are continuously generated in real time, rather than the 
offline analysis that identifies the extreme values when all the simulation results are available. In fact, 
according to the real studies at ORNL, it is nearly impossible to save all the results generated from the 
simulation process as even saving the whole one-month simulation results will require 8 years! While 
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Figure 1. Illustration of (a) the CFS approach and (b) a desired saving strategy.
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there are some approaches in the literature that only record some summary statistics of interest (e.g. the 
average of data streams) (Castruccio & Genton, 2016) or consider some in-transit techniques which 
process the simulation results while they are still resident in memory (Bennett, Comandur, Pinar, & 
Thompson, 2013; Bennett et al., 2012), these methods are not suitable to be used here as well. This is 
because the climate research is often done at the post-processing stage (i.e. specific scientific questions 
were not known at the time when the simulation was run), thus requiring to save the raw simulation 
data directly when it is generated in real time.

2.  Data and approach

As climate research is based on simulation analysis as investigations of climate changes are on both 
the global and regional scales and often over hundreds or thousands of years. It is a common practice 
in this real application to consider the simulation data generated from a powerful simulation model 
as a substitution for the real data. In particular, the data-sets are generated based on the large-scale 
simulation models in Archibald et al. (2010), which are used to simulate zonal flow impinging on a 
mountain (Williamson, Drake, Hack, Jakob, & Swarztrauber, 1992). There are three different spatial 
resolutions involved in the data-sets: low resolution, medium resolution, and high resolution, and 
the detailed resolution information is listed in Table 1. At each time t, there are in total m data points 
generated from the simulation model. Figure 2 illustrates two snapshots of the high-resolution data-
set at time t = 6000 and t = 12,000, which shows that each data stream dynamically changes over time 
and the magnitude of such changes are quite different for different data streams.

Suppose that in a climate simulation, there are in total m variables of interest. At each time t, 
x(t) = (x(1, t),… , x(m, t))

�

∈ ℝ
m×1 denotes the generated simulation data of these m variables. Assume 

that the initial condition of the simulation model x(1) is known and the simulation process runs for 
T total number of timesteps, which creates a full data-set X = {x(i, t):i = 1, 2,… ,m, t = 1, 2,… ,T}. 
Denote x(i, ⋅) = (x(i, 1),… , x(i,T)) ∈ ℝ

1×T to be the simulation data of the ith data stream. It should 
be noted that the distributions or the values of each data steam are generally unknown or unpredictable 
before conducting simulations. This is because the data generation needs to be done sequentially, i.e. 
the data generated at time t + 1 depend on the results before time t.

As mentioned in the first section, our interested problem faces two main resource constraints: (i) 
only limited data can be temporarily stored in the memory space; and (ii) only limited simulation 
results can be written into the hard disk. Here, we provide the detailed information:

(i) � Denote (t) ⊆ [x(1),… , x(t)] ∈ ℝ
m×t to be the set of data points that are temporally stored 

in the memory space at time t. In particular, we assume that the total number of data points in 
the set (t) must be less than or equal to a predefined threshold M, i.e. |(t)| ≤ M, where |⋅| 
denotes the cardinality of a set. This constraint requires us to dynamically manage the data in 
(t) (i.e. either discarded or permanently saved to the hard disk) during the continuous data 
generation process.

(ii) � Denote (t) ⊆ [x(1),… , x(t)] ∈ ℝ
m×t to be the set of data points that have been permanently 

saved in the hard disk by time t. Once the data are in the set (t), they cannot be removed or 
changed. Please note that the saving device normally reads or writes a batch of data points, which 
is called a ‘block’ at a time to minimize overhead. To be consistent with this practical setting as 
in the CFS approach, here we assume that it takes k timesteps to save a block of s data points. 

Table 1. Dimensions of data-sets with three spatial resolutions.

Number of data streams m = m1 × m2 Number of total timesteps, T
Low resolution 30 × 64 = 1920 3000
Medium resolution 62 × 128 = 7936 6000
High resolution 126 × 256 = 32,256 12,600
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Specifically, this means that at time t = n⋅k (n = 1, 2,… ⌊ T

k
⌋, in which ⌊N⌋ denotes the largest 

integer that is less than or equal to N), s data points 
{
x(G):G =

{(
i
1
, t

1

)
,… ,

(
is, ts

)}}
  need to be 

selected from the memory space (t) and added into the set (t), where ij = 1, 2,… ,m, tj ≤ t:
 

Thus, the key challenge here is how to sequentially determine which s data points should be written 
into the hard disk at every k timesteps. Please note that for a simulation process with T total number 
of timesteps, there are only in total S = s⌊ T

k
⌋ data points that can be saved. In this way, r = S

mT
 is the 

saving ratio, which denotes the percentage of data saved in the hard disk over the total amount of data 
generated from the simulation.

To highlight our main ideas, below we first give definitions of the local extrema and the shift indi-
cators, respectively.

Definition 1: A data point x(i, t) is called a local maximum (minimum) for the ith data stream 
x(i, ⋅) if

 

where i = 1,… ,m, t = 2,… ,T − 1. Here, local maxima and local minima are collectively called local 
extrema. Moreover, we denote τi,j to be the time at which the ith data stream x(i, ⋅) achieves its jth local 
extremum, i.e. x(i, �i,j) is the jth local extremum of the data stream x(i, ⋅).

Definition 2: The shift indicator d(i, t) for the ith data stream x(i, ⋅) is defined to be the numerical 
difference between the data point x(i, t) and the most recent local extremum before time t, i.e.

 

where τi,0 = 1.
Particularly, as a special case of Equation (3), d

(
i, �i,j

)
 denotes the difference between two consec-

utive local extrema (i.e. the jth and the (j − 1)th local extrema) for the ith data stream x(i, ⋅)
 

Here, if d(i, 𝜏i,j) > 0, x
(
i, �i,j

)
 is a local maximum; otherwise, x

(
i, �i,j

)
 is a local minimum.

Recall that the objective of this paper is to develop an effective online data monitoring and saving 
strategy that can intelligently identify and select the local extrema to save to the hard disk such that 

(1)(t) = (t − 1) ∪ {x(G)},(t) = (t)�{x(G)}.

x(i, t) > x(i, t − 1) and x(i, t) > x(i, t + 1)

(2)(x(i, t) < x(i, t − 1) and x(i, t) < x(i, t + 1)),

(3)d(i, t) = x(i, t) − x
(
i, 𝜏i,j−1

)
, for 𝜏i,j−1 < t ≤ 𝜏i,j, j ≥ 1,

(4)d
(
i, �i,j

)
= x

(
i, �i,j

)
− x

(
i, �i,j−1

)
.

Figure 2. Snapshots of the high-resolution climate data-set at time (a) t = 6000 and (b) t = 12,000.
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large changes in the simulations can be recorded. For different data streams, there may be differences 
in the magnitude of changes, and thus we need to not only identify the changes of a data stream over 
the temporal domain, but also screen out the most significant changes of all data streams over the 
spatial domain. To be specific, here we give a clear definition about the significant data points that are 
desired to be saved during simulations.

Definition 3: Let {|d(I(1))|, |d(I(2))|,…} denote the decreasing order statistics of the shift indica-
tors {|d(I

1
)|, |d(I

2
)|,…} (i.e. |d(I(1))| ≥ |d(I(2))| ≥ …), where Il is the pair of index (il , �il ,jl ) of the local 

extremum x(il , �il ,jl ). The set of ‘significant’ local extrema E is defined as:
 

According to Definition 3, the data points in E are the local extrema with the top |(T)| largest shift 
indicators over both temporal and spatial domains during the entire simulation, where |(T)| refers 
to the maximum number of points that can be saved after the simulation is done. Thus, our goal is to 
in real time, identify these local extrema such that the cardinality of the intersection of the set E and 
the saved data points (T) can be maximized. Mathematically, this means

 

2.1.  Overview of the proposed online data monitoring and saving strategy

We would like to emphasize that while our interested problem (i.e. detecting significant local extrema 
with large shift indicators) seems straightforward when all the simulation data are available offline, such 
task is quite challenging to be conducted in real time as (i) the ranked statistics of the shift indicators 
requires knowing all the simulation data ahead and (ii) there are only limited storage and memory 
capacities available. To address these issues, we propose an online monitoring and saving strategy 
named as Local Extremum-based Saving (LES) in this subsection.

From the technical point of view, our proposed method has two innovative ideas. One is to dynam-
ically and adaptively select the most informative data points (i.e. significant local extrema) across the 
spatial domain to characterize large changes over the temporal domain during real-time stimulations. 
If we compare our method with the CFS approach from the spatiotemporal perspectives, both meth-
ods still save the same number of data points into the hard disk; however, the difference is that the 
CFS algorithm first looks at the spatial domain (the snapshot information x(t) of all data points) and 
then consider the temporal domain (save information at every k timesteps), while our LES algorithm 
switches the spatial and temporal domains such that it can better manage the limited resources to 
identify and store the most informative data points generated from simulations in real time. In this 
sense, the CFS approach can be regarded as a special case of our proposed method. Another inno-
vation of our proposed method is that it allows us to simultaneously manage the challenges of data 
monitoring and saving in an integrated manner given the resource constraints.

There are three essential components involved in the proposed LES strategy: (i) detecting local 
extrema from real-time simulations, (ii) updating data points based on the memory space constraint, 
and (iii) saving data points into the hard disk. Below we discuss each component in details.

2.1.1.  Detecting local extrema from real-time simulations
In this subsection, we will discuss a method to detect the local extrema based on real-time simulations. 
Note that the ith data stream x(i, ⋅) = (x(i, 1),… , x(i,T)) can be separated into a series of segments 
offline such that the data stream is monotonic within each segment (which we refer to as ‘monotonic 
segment’ hereafter) and any two consecutive segments have opposite monotonicity (one increasing and 
the other decreasing). We denote the 

(
j + 1

)
th monotonic segment by 

{
x
(
i, �i,j

)
,… , x

(
i, �i,j+1

)}
,  

where recall x
(
i, �i,j

)
 is the jth local extremum of the ith data stream.

(5)E =
{
x
(
I(l)

)
:l = 1,… , |(T)|

}
.

(6)max|E ∩ (T)|.
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During online monitoring, with the newly generated data point x(i, t) at time t, we need to determine 
whether it is a new local extremum. However, this is impossible to be conducted without knowing 
the generated data at the next timestep according to definition 1. As a result, instead we propose to 
determine whether the data point x(i, t − 1) is a local extremum at time t. To do this, we first define a 
reference point z(i, t − 1) that records the most recent local extremum for the ith data stream before 
time t − 1 (τi,j < t − 1 ≤ τi,j+1), i.e. z(i, t − 1) = x(i, �i,j), where x(i, �i,j) is the first point in the (j + 1)

th monotonic segment {x(i, �i,j), x(i, �i,j + 1),… , x(i, �i,j+1 − 1), x(i, �i,j+1)}. To get the value of z(i, t) 
online, at time t we first let z(i, t) = z(i, t − 1). Then, we compare the sign of x(i, t) − x(i, t − 1) and 
x(i, t − 1) − z(i, t) to conclude the status of the point x(i, t − 1). Specifically, we conclude x(i, t − 1) 
to be a local extremum if

 

This means that x(i, t − 1) is the first point in the (j + 2)th monotonic segment, i.e. τi,j+1 = t − 1, and 
thus we calculate the shift indicator d(i, t − 1) = x(i, t − 1) − z(i, t) and then update the reference 
point z(i, t) = x(i, t − 1). Otherwise, if the following condition holds:

 

it means that the data point x(i,  t  −  1) is still in the (j + 1)th monotonic segment 
{x(i, �i,j), x(i, �i,j + 1),… , x(i, �i,j+1 − 1), x(i, �i,j+1)}, and thus it is not a local extremum. Consequently, 
we keep z(i, t) unchanged.

These two different scenarios are illustrated in Figure 3. Figure 3(a) shows the case when x(i, t − 1) 
is not a local extremum, the reference point is thus kept unchanged and the point x(i, t − 1) is removed 
from memory space (which will be further discussed in Section 2.1.2). On the contrary, Figure 
3(b) shows the case when x(i, t − 1) is indeed a local extremum, the reference point is updated as 
z(i, t) = x(i, t − 1).

(7)(x(i, t − 1) − z(i, t)) ⋅ (x(i, t) − x(i, t − 1)) < 0.

(8)(x(i, t − 1) − z(i, t)) ⋅ (x(i, t) − x(i, t − 1)) ≥ 0,

Figure 3. Illustration of updating the value of reference point under two scenarios: (a) when x(i, t − 1) is not a local extremum and 
(b) when x(i, t − 1) is a local extremum.
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2.1.2.  Updating data points based on the memory space constraint
As simulation data are generated much faster than written into the hard disk, many data points have 
to be temporally stored in the memory space before they can be written into the hard disk. However, 
due to the limited memory capacity compared with the large amount of continuously generated data, 
it is impossible to keep all the detected local extrema from Section 2.1.1 in the memory space. In other 
words, the system must dynamically ‘throw away’ some local extrema that are temporally stored in 
the memory space, in order to leave enough rooms to record more significant local extrema in real 
time. In this subsection, we propose an updating strategy such that the local extrema with large shift 
indicators can be preserved in the memory space.

Please note that the monitoring strategy proposed in Section 2.1.1 only requires knowing three 
data points z(i, t), x(i, t − 1), x(i, t) in order to detect local extrema in the ith data stream at time t. 
Based on this observation, we partition the data points that are temporally stored in the memory space 
(t) at time t into two subsets:

 

Here, 
1
(t) includes all data points that are necessary for detecting the local extrema. Thus, at the 

beginning of time t,
 


2
(t) contains the already detected local extrema at the beginning of time t:

 

where d(i, �i,j) is the shift indicator as defined in Equation (4). Please note that here τi,j ≤ t − 2 is because 
at the beginning of time t, we have not yet checked whether x(i, t − 1) is a local extremum or not. 
Below, we discuss how to adaptively manage and update the two subsets 

1
(t) and 

2
(t) separately.

First, recall that at time t, our proposed monitoring scheme in Section 2.1.1 can determine whether 
the data point x(i, t − 1) is a local extremum based on the set 

1
(t). In the case that x(i, t − 1) is not a 

local extremum, it will then be removed from the set 
1
(t) (as shown in Figure 3(a)); otherwise, the 

data point x(i, t − 1) and its shift indicator will be copied from 
1
(t) into the set 

2
(t):

 

Second, it should be noticed that the cardinality of 
1
(t) is fixed to be 3 m during the processing of 

the LES algorithm at any time t ≥ 2. Thus, the main challenge here is how to adaptively update the set 


2
(t) at each time given the predefined threshold M. Specifically, there are two critical questions to 

ask: (i) When to discard data points from the set 
2
(t)? and (ii) which data points should be discarded 

from the set 
2
(t)?

(i) � The capacity of the set 
2
(t) is restricted by both memory and storage constraints. On one 

hand, with the memory constraint |(t)| ≤ M,
 

On the other hand, recall that after time t, there are ⌊ t

k
⌋ ⋅ s data points that have already been perma-

nently written into the hard disk. In other words, only S − ⌊ t

k
⌋ ⋅ s additional data points can be further 

recorded before the simulation finishes. This means that the subset 
2
(t) only needs to keep equal 

to or less than 2
�
S − ⌊ t

k
⌋ ⋅ s

�
 number of data points (local extrema with their shift indicators) as the 

excessive data points cannot be written into the hard disk. In this way, we derive a dynamic upper 
bound U(t) for the cardinality of the set 

2
(t):

 

(9)(t) = 
1
(t) ∪

2
(t).

(10)
1
(t) = {z(i, t), x(i, t − 1), x(i, t):i = 1, 2,… ,m}.

(11)
2
(t) ⊆

{
x
(
i, 𝜏i,j

)
, d
(
i, 𝜏i,j

)
:i = 1, 2,… ,m, 1 ≤ 𝜏i,j ≤ t − 2

}
,

(12)
2
(t) = 

2
(t) ∪ {x(i, t − 1), d(i, t − 1)}

(13)||2
(t)|| = |(t)| − 3m ≤ M − 3m.

(14)U(t) = min

�
2

�
S − ⌊ t

k
⌋ ⋅ s

�
,M − 3m

�
.
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With this bound available, we can then answer the first question that once ||2
(t)|| > U(t), we should 

start to discard data points from the set 
2
(t).

(ii) � To answer the second question, recall that our goal is to detect and save the local extrema with 
large shift indicators. This can be done by considering the decreasing order statistics of the 
shift indicators of all the data points from whole data streams that are stored in the set 

2
(t).  

In particular, suppose at time t, 
2
(t) =

{
x
(
I
1

)
,… , x

(
Iq

)}
, where q is the total number 

of local extrema in the set 
2
(t) and Il is the pair of index (i, t) for the lth detected local 

extremum in the set 
2
(t), we sort the absolute value of the shift indicators for all the local 

extrema in the set 
2
(t) according to the decreasing order: 

{
|||d
(
I(1)

)|||,… ,
||||
d
(
I(q)

)||||

}
. 

Then, we consider keeping the local extrema witWU(t) shift indicators in the set 
2
(t), i.e. 


2
(t) =

{
x
(
I(1)

)
,… , x

(
IU(t)

)}
.

2.1.3.  Saving data points into the hard disk
Recall that at time 

t = n ⋅ k

, n = 1, 2,… ⌊ T

k
⌋, s data points that are temporally stored in the memory 

space can be written into the hard disk. Similar to the approach discussed in Section 2.1.2, we also 
consider the decreasing order statistics of the shift indicators for all the data points that are stored in 
the set 

2
(t), and choose the data points with the largest s shift indicators to write into the hard disk. 

In particular, suppose {|d(I(1))|,… , |d(I(l))|} are the absolute value of the shift indicators for all the l 
data points in 

2
(t) that are sorted in the decreasing order, i.e. |d(I(1))| ≥ … ≥ |d(I(l))|. Then, the set 

F below includes the data points that are written into the hard disk at time t = n ⋅ k, n = 1, 2,… ⌊ T

k
⌋:

 

where I(j) is the pair of index 
(
i(j), t(j)

)
  for the local extremum with the jth largest shift indicator. 

Next, we update the set (t) and (t):
 

Please note that in some special cases, the number of significant local extrema in 
2
(t) may be smaller 

than s, i.e. ||2
(t)|| < s (especially in the beginning stage of the simulations). To fully utilize the storage 

resource, in such a case, we choose additional data points from the set 
1
(t) to save into the hard disk. 

Specifically, we sort the current data points in 
1
(t) based on {|x(1, t) − z(1, t)|,… , |x(m, t) − z(m, t)|} 

and select the top s − ||2
(t)|| data points to F.

2.2.  An illustrative example for the LES algorithm

To better illustrate the idea of the proposed LES algorithm, we consider an example that involves two 
data streams x(1, ⋅) and x(2, ⋅), which are continuously and sequentially generated from a simulation 
study. Figure 4 shows the generated data points of these two data streams with the first T = 10 time-
steps. Due to the resource constraints, we assume that at every k = 5 timesteps, only s = 3 data points 
can be written into the hard disk and only M = 12 data points can be temporally stored in memory at 
any time. Based on this problem setting, we can see that the total number of data points that can be 
written into the hard disk is S = s⌊ T

k
⌋ = 6 and the saving ratio is r = S

mT
=

3

10
.

Table 2 shows the detailed steps of the proposed LES algorithm when it is implemented based on 
the example described above. In particular, the columns ‘x(i, t)’, ‘z(i, t)’ and ‘d(i, t)’ record the simulated 
data value, the reference point and the shift indicator of x(i, ⋅) at each time t, respectively. In addition, 
at each time t, Table 2 shows the details of the data points stored in 

1
(t), 

2
(t) and the total number 

of data points in (t). It should be noticed that the memory space used by x(1, ⋅) keeps increasing 
with time, while the memory space used by x(2, ⋅) does not. This is because x(2, ⋅) is monotonically 

(15)F =
{
x
(
I(j)

)
:, j = 1, 2,… , s

}
,

(16)(t) = (t − 1) ∪ F, (t) = (t)�F.
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increasing from time t = 1 to t = 10, so there are no local extrema detected by the LES algorithm. On 
the contrary, since most data points in x(1, ⋅) are local extrema, the LES algorithm aims to ‘remember’ 
those local extrema as much as possible. In particular, once the new data point x(i, t) is generated at 
time t, the LES algorithm stores the data point in 

1
(t) and then determines if it is a local extremum 

at the following timestep.
Recall that at every k = 5 timesteps, three data points can be written in the hard disk. For example, 

at time t = 5, {x(1, 2), x(1, 3), x(1, 4)} are selected to be written into the hard disk as they have the 
largest shift indicators and then removed from 

2
(t) (bold in Table 2). Similarly, at time t = 10, the 

data points {x(1, 5), x(1, 6), x(1, 8)} have the largest magnitude of shift indicators (bold in Table 2) and 
thus they are selected to be written into the hard disk and then removed from 

2
(t). In addition, from 

Table 2 it can be seen that at t = 10, the number of data points stored in 
2
(t) exceeds our derived 

bound U(t) = min(2(S − ⌊ t

k
⌋ ⋅ s),M − 3m) = 0 in Equation (14). Consequently, all data points have 

to be removed.
In Figure 4, the data points marked in circles and stars are the local extrema and the selected data 

points written in the hard disk by using our proposed LES algorithm, respectively. All the data points 
that the LES algorithm saved are from x(1, ⋅) since (i) there is no local extremum detected in the second 
stream yet; and (ii) the shift magnitude of the second data stream is not large enough compared to the 
first data stream. This is a reasonable result as if the second data stream still monotonically increases, 
we should wait for saving until the data stream reaches its local maximum. In such a case, it is more 
preferred to record the fluctuation of the first data stream instead. In this example, we can see that the 
most significant six local extrema are x(1, 5), x(1, 4), x(1, 6), x(1, 8), x(1, 3) and x(1, 2) since the sorted 
shift indicators of all local extrema are |d(1, 5)| > |d(1, 4)| > |d(1, 6)| > |d(1, 8)| > |d(1, 3)| > |d(1, 2)| > |d(1, 9)|. 
Therefore, this results show that LES algorithm can effectively detect and save the most informative 
local extrema in real time.

2.3.  Flow chart of the LES algorithm

Figure 5 provides an overview of the LES algorithm.

Figure 4. Plot of the generated two data streams in the illustrative example.
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3.  Results

In this section, we will thoroughly evaluate the performance of the proposed LES algorithm and further 
compare with some baseline methods based on the climate simulation data-sets.

Please note that the problem considered in this paper is an open question which has not been well 
explored in the existing literature. To evaluate the effectiveness of our proposed strategy, besides the 
CFS algorithm that is currently used in ORNL, we also considered two additional possible approaches 
as the baseline methods in this case study. Recall that our proposed LES algorithm has two important 
components: (1) identifying the local extrema, and (2) ranking the shift indicators based on the decreas-
ing order to determine the saving priority of the local extrema. To demonstrate that both components 

Table 2. Details of implementing the LES algorithm for the illustrative example.

t

x(1,∙) x(2,∙)

|(t)|x(1, t) z(1, t) d(1, t) x(2, t) z(2, t) d(2, t)

1 20.50 20.50 0 17.86 17.86 0 4


1
(t) = {z(1, 1) = 20.50, x(1, 1) = 20.50, z(2, 1) = 17.86, x(2, 1) = 17.86}


2
(t) =

{
�
}

2 20.63 20.50 0.13 17.99 17.86 0.13 6


1
(t) = {z(1, 2) = 20.50, x(1, 1) = 20.50, x(1, 2) = 20.63, z(2, 2) = 17.86, x(2, 1) = 17.86, x(2, 2) = 17.99}


2
(t) =

{
�
}

3 19.72 20.63 −0.91 18.07 17.86 0.21 8


1
(t) = {z(1, 3) = 20.63, x(1, 2) = 20.63, x(1, 3) = 19.72, z(2, 3) = 17.86, x(2, 2) = 17.99, x(2, 3) = 18.07}


2
(t) = {x(1, 2) = 20.63, d(1, 2) = 0.13}

4 21.03 19.72 1.31 18.21 17.86 0.35 10


1
(t) = {z(1, 4) = 19.72, x(1, 3) = 19.72, x(1, 4) = 21.03, z(2, 4) = 17.86, x(2, 3) = 18.07, x(2, 4) = 18.21},


2
(t) = {x(1, 2) = 20.63, d(1, 2) = 0.13, x(1, 3) = 19.72, d(1, 3) = −0.91},

5 18.92 21.03 −2.11 18.26 17.86 0.40 12


1
(t) = {z(1, 5) = 21.03, x(1, 4) = 21.03, x(1, 5) = 18.92, z(2, 5) = 17.86, x(2, 4) = 18.21, x(2, 5) = 18.26}

2(t) = {x(1, 2) = 20.63, d(1, 2) = 0.13, x(1, 3) = 19.72, d(1, 3) = −0.91, x(1, 4) = 21.03, d(1, 4) = 1.31} 

Write the data points x(1, 2), x(1, 3), x(1, 4) into the hard disk. 
2
(t) = �, |(t)| = 6

6 20.08 18.92 1.16 18.39 17.86 0.53 8


1
(t) = {z(1, 6) = 18.92, x(1, 5) = 18.92, x(1, 6) = 20.08, z(2, 6) = 17.86, x(2, 5) = 18.26, x(2, 6) = 18.39},


2
(t) = {x(1, 5) = 18.92, d(1, 5) = −2.11}

7 19.56 20.08 −0.52 18.46 17.86 0.60 10


1
(t) = {z(1, 7) = 20.08, x(1, 6) = 20.08, x(1, 7) = 19.56, z(2, 7) = 17.86, x(2, 6) = 18.39, x(2, 7) = 18.46}


2
(t) = {x(1, 5) = 18.92, d(1, 5) = −2.11, x(1, 6) = 20.08, d(1, 6) = 1.16}

8 19.15 20.08 −0.93 18.58 17.86 0.72 10


1
(t) = {z(1, 8) = 20.08, x(1, 7) = 19.56, x(1, 8) = 19.15, z(2, 8) = 17.86, x(2, 7) = 18.46, x(2, 8) = 18.58}


2
(t) = {x(1, 5) = 18.92, d(1, 5) = −2.11, x(1, 6) = 20.08, d(1, 6) = 1.16}

9 19.23 19.15 0.08 18.71 17.86 0.85 12


1
(t) = {z(1, 9) = 19.15, x(1, 8) = 19.15, x(1, 9) = 19.23, z(2, 9) = 17.86, x(2, 8) = 18.58, x(2, 8) = 18.71}


2
(t) = {x(1, 5) = 18.92, d(1, 5) = −2.11, x(1, 6) = 20.08, d(1, 6) = 1.16, x(1, 8) = 19.15, d(1, 8) = −0.93}

10 19.06 19.15 −0.09 18.79 17.86 0.93 14


1
(t) = {z(1, 10) = 19.15, x(1, 9) = 19.23, x(1, 10) = 19.06, z(2, 10) = 17.86, x(2, 9) = 18.71, x(2, 10) = 18.79}

2(t) = {x(1, 5) = 18.92, d(1, 5) = −2.11, x(1, 6) = 20.08, d(1, 6) = 1.16, x(1, 8) = 19.15, d(1, 8) = −0.93, 
            x(1, 9) = 19.23, d(1, 9) = 0.08}

Write the data points x(1, 5), x(1, 6), x(1, 8) into the hard disk.
2
(t) = �, |(t)| = 6

Exceed memory limits, remove x(1, 9) and d(1, 9) from memory space.
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are necessary, we thus consider two additional baseline methods that focus on only one of these two 
components. Specifically, in these two baseline methods, we still calculate shift indicators and update 
data points based on the memory constraints as introduced in Sections 2.1.1 and 2.1.2. However, in the 
first baseline method, we consider a parameter d0 which refers to the smallest interested magnitude of 
changes for detection specified by practitioners and decide to save a local extremum x(i, τij) immedi-
ately if the absolute value of its shift indicator |d(i, �ij)| is larger than the predefined threshold d0. We 
call this method the Threshold-based Saving (TS) algorithm. As for the second baseline method, we 
simply sort the magnitude of shift indicators for all generated data points and decide to save the data 
based on the decreasing order of the shift indicators. Thus, unlike our proposed LES algorithm, this 
baseline method may not only save local extrema. We call this method the Largest Shift Indicator (LSI) 
algorithm. In this case study, we will evaluate the performance of the LES algorithm and compare with 
the aforementioned three baseline methods, i.e. the CFS, TS and LSI algorithms.

Recall that our objective is to detect and select the local extreme with large shift indicators to 
write into the hard disk during the real-time simulations. Specifically, according to Equation (6), this 
means to find the set (T) such that the cardinality |E ∩(T)| is maximized. In particular, we will 
thoroughly evaluate the performance of our proposed methods under different values of the saving 
ratio r in the three simulated data-sets mentioned above. We focus on a performance measure |E ∩(T)|

|E|
, which characterizes the ratio of the number of significant local extrema that are finally saved in the 
hard disk over the total number of significant local extrema generated from simulations. In this way, 
a higher value in this performance measure |E ∩(T)|

|E|
 indicates a more efficient algorithm.

Figure 5. A flow chart of the LES algorithm.
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Figure 6 illustrates a comparison between the LES, CFS, TS and LSI algorithms for one data stream 
generated from the low-resolution simulations, when the saving ratio is r = 0.01 (i.e. only 1% of the 
original data generated from simulations can be written into the hard disk). In this figure, the saved 
data are marked by ‘star’ and the data points in E (i.e. the significant local extrema) are highlighted in 
circles. From this example in Figure 6, we can see that the data points with the large shift indicators 
are automatically detected and saved into the hard disk by the proposed LES algorithm, while only 
the data points generated at the specific time with a fixed frequency can be saved by the CFS strategy. 
For the TS algorithm, Figure 6 shows the saving results when the pre-specified threshold d0 is set to 
be 0.015. In that case, the saved data are all located at the beginning stage of the simulation, as the 
pre-defined threshold is too small and thus uses up all the saving resource long before the simulation 
ends. Likewise, we also find that d0 cannot be set too large; otherwise, only few data points can be 
finally saved into the hard disk. In theory, pre-specifying an appropriate threshold d0 is a challenging 
task as the distribution and the values of each data stream are often unknown before the simulation 
starts. Thus, without considering the rank of the shift indicators, the TS algorithm fails to effectively 
utilize the available saving resources during the simulation process. As for the LSI algorithm, although 
it focuses on saving the data points based on the decreasing order of the shift indicators, the result 
shows that the saved points are clustered around some local extrema and within a limited temporal 
window, which still fails to effectively leverage the available saving resources over the entire span of the 
simulation runs. Thus, this result shows that it is necessary to consider both detecting local extrema 
and ranking the shift indicators to determine the saving priority in real-time simulations.

Figure 7 further shows the saving results of the LES algorithm under saving ratios of 1

150
 and 1

200
 for 

the data stream shown in Figure 6(a). As the saving ratio gets smaller, both the number of data points 

(a) (b)
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Figure 6. A comparison between (a) the LES algorithm, (b) the CFS algorithm, (c) the TS algorithm, and (d) the LSI algorithm for one 
data stream when the saving ratio is 1%.
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in E and the number of saved data points decrease. Even when the saving ratio is as small as 1

200
, the 

LES algorithm is still capable of capturing most of the extrema of the data stream.
Table 3 further summarizes and compares the results of the LES, CFS, TS and the LSI algorithms 

based on the medium-resolution data-set under different saving ratios r = 1

100
,

1

150
, and 1

200
. For each 

combination, there is a 2 × 2 block matrix that records the performance of each algorithm, in which 
the rows represent the number of data points that an algorithm chooses to save (S) and discard (D), 
while the columns list the number of data points that are actually in the set E (T) and not (F). For 
example in Table 3, when r = 1

100
, among the total 476,160 significant local extrema that are generated 

from the simulations, there are 366,959 significant local extrema that are finally saved in the hard 
disk, while 109,201 significant local extrema are missed by the LES algorithm. This is because as only 
limited memory space is available, certain local extrema with relatively smaller shift indicators have 
to be thrown away to make sure more significant local extrema can be stored in the memory space 
and eventually written into the hard disk. Please note that in this case, the LES algorithm indeed 
saved 109,201 data points that are not significant local extrema (i.e. not in the set E). This is because 
at the beginning stage of the simulation, there may not be enough significant local extrema generated 

Figure 7. Saving results of the LES algorithm for saving ratios of (a) r = 1/150 and (b) r = 1/200 for one data stream in low resolution data.

Table 3. Performance comparison of the LES, CFS, TS, and LSI algorithms based on the medium-resolution data-set under different 
saving ratios 1

100
, 1

150
 and 1

200
.

LES CFS

r =
1

100
0.77 T F 0.02 T F

S 366,959 109,201 S 8163 467,997
D 109,201 47,030,639 D 467,997 46,671,843

r =
1

150
0.84 T F 0.01 T F

S 266,267 51,173 S 4297 3,13,143
D 51,173 47,247,387 D 313,143 46,985,417

r =
1

200
0.88 T F 0.01 T F

S 209,744 28,336 S 2722 235,358
D 28,336 47,349,584 D 235,358 47,142,562

TS LSI

r =
1

100
0.54 T F 0.03 T F

S 255,262 220,898 S 12,570 463,590
D 220,898 46,918,942 D 463,590 46,676,250

r =
1

150
0.36 T F 0.02 T F

S 113,406 204,034 S 6210 311,230
D 204,034 47,094,526 D 311,230 46,987,330

r =
1

200
0.27 T F 0.02 T F

S 65,393 172,687 S 3835 234,245
D 172,687 47,205,233 D 234,245 47,143,675
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and stored in the memory space, and thus some other data points that are ranked high based on the 
descending order of the shift indicators (see Equation (15)) are also selected to write into the hard disk.

To consistently describe these cells, we define the entries of the 2 × 2 table by both their row and 
column names. The number of significant local extrema that is successfully saved by a saving strategy 
(i.e. the entry at the intersection of row ‘S’ and column ‘T’) is denoted as ‘ST’, and the number of insig-
nificant data points that is discarded by a saving strategy is called ‘DF’. These two diagonal categories 
thus show the effectiveness of a saving strategy, which are analogous to the ‘True Positives’ and ‘True 
Negatives’ in a confusion matrix. Likewise, ‘SF’ denotes the number of saved data points which are not 
in E and ‘DT’ denotes the number of significant local extrema that a saving strategy fails to save. These 
two off-diagonal entries are similar to the ‘False Positives’ and ‘False Negatives’ in a confusion matrix. 
Consequently, the performance measure |E ∩(T)|

|E|
 is equivalent to the True Positive Rate (TPR) in a 

confusion matrix and the value of this measure is shown on the upper left corner of each 2 × 2 block.
From Table 3, the LES algorithm outperforms all the baseline methods in the sense that each ‘con-

fusion matrix’ of the LES algorithm has much larger diagonal entries and smaller off-diagonal entries 
than that of the CFS, TS and LSI algorithms in all the considered scenarios. Also, the LES algorithm 
obtains the largest value in the performance measure |E ∩(T)|

|E|
 at different values of the saving ratio r. This 

result shows that our proposed LES algorithm successfully manages the limited resources to maximize 
the detection and saving powers for these significant local extrema that are generated from real-time 
simulations. Recall that the saving ratio r characterizes how limited the storage resource is. According 
to the practical settings in the simulation model, here we consider the range of the saving ratio from 
1

100
 to 1

200
. From Table 3, we can see that when r decreases, it means that the storage capacity becomes 

more restricted, and thus it is rational to see that ST and SF both decrease. However, a surprising 
result here is that the performance measure |E ∩(T)|

|E|
 actually increases as the value of r decreases in our 

proposed LES algorithm. One possible reason is that as the saving ratio r decreases, the cardinality of 
both the target set E and the set of saved data points decreases accordingly. However, at a lower saving 
ratio, the LES algorithm waits longer before deciding to save a batch of data and thus it captures data 
points with larger shift indicators. Therefore, even though the number of saved data points decreases, 
the proportion of saved data in set E increases. This means even when the storage capacity becomes 
more restricted, the LES algorithm can still effectively leverage the available resources to dynamically 
capture the most significant local extrema.

To understand how the data resolution influences the performance of the LES algorithm, Table 
4 shows the performance of the LES algorithm under different resolutions of the data-sets when the 
saving ratios are 1

100
, 1

150
 and 1

200
. As the resolution of the data increases, the memory capacity becomes 

more restricted, and thus we expect to see that the value of |E ∩(T)|
|E|

 decreases.
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